论文标题

人权研究中的NLP - 提取有关警察和陆军单位及其指挥官的知识图

NLP in Human Rights Research -- Extracting Knowledge Graphs About Police and Army Units and Their Commanders

论文作者

Bauer, Daniel, Longley, Tom, Ma, Yueen, Wilson, Tony

论文摘要

在本工作论文中,我们探讨了使用NLP系统来协助安全部队监视器(SFM)的工作。 SFM创建了有关警察,陆军和其他安全部队的组织结构,指挥人员和行动的数据,该部队协助人权研究人员,记者和诉讼人的工作,以帮助识别并带来涉嫌滥用人权和国际刑法的特定单位和人员。该工作论文提出了一个NLP系统,该系统从英语新闻中提取,报告了安全部队的名称以及其人员的传记细节,并渗透了他们之间的正式关系。与该工作文件一起发布的是系统的代码和培训数据集。我们发现实验NLP系统以公平至良好的水平执行任务。它的性能足以证明进一步发展为实时工作流程的合理性,该工作流程将深入了解其绩效是否可以转化为时间和资源的节省,从而使其成为有效的技术干预。

In this working paper we explore the use of an NLP system to assist the work of Security Force Monitor (SFM). SFM creates data about the organizational structure, command personnel and operations of police, army and other security forces, which assists human rights researchers, journalists and litigators in their work to help identify and bring to account specific units and personnel alleged to have committed abuses of human rights and international criminal law. This working paper presents an NLP system that extracts from English language news reports the names of security force units and the biographical details of their personnel, and infers the formal relationship between them. Published alongside this working paper are the system's code and training dataset. We find that the experimental NLP system performs the task at a fair to good level. Its performance is sufficient to justify further development into a live workflow that will give insight into whether its performance translates into savings in time and resource that would make it an effective technical intervention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源