论文标题

无线网络中对联邦学习的攻击

Jamming Attacks on Federated Learning in Wireless Networks

论文作者

Shi, Yi, Sagduyu, Yalin E.

论文摘要

Federated学习(FL)提供了一个分散的学习环境,因此一群客户可以协作在服务器上培训全球模型,同时将培训数据保密。本文研究了如何在无线网络执行时启动空中干扰攻击以破坏FL过程。作为无线示例,将FL应用于学习如何在不同位置(例如合作传感器中)收集的客户(Spectrum传感器)收集的无线信号。对手可以将从客户端到服务器的本地模型更新(上行链路攻击)或全局模型的变速器限制传输,将服务器更新到客户端(下行链路攻击)或两者。鉴于对每回合可以攻击的客户数量施加的预算,因此根据其本地模型精确措施选择(上行链路/下行链路)攻击的客户端,这些精度将在没有攻击的情况下预期或通过Spectrum观测值进行排名。这种新颖的攻击通过考虑不同的处理速度和攻击客户的成功概率来扩展到一般设置。与基准攻击方案相比,这种攻击方法显着降低了FL性能,从而揭示了FL在无线网络中堵塞攻击的新漏洞。

Federated learning (FL) offers a decentralized learning environment so that a group of clients can collaborate to train a global model at the server, while keeping their training data confidential. This paper studies how to launch over-the-air jamming attacks to disrupt the FL process when it is executed over a wireless network. As a wireless example, FL is applied to learn how to classify wireless signals collected by clients (spectrum sensors) at different locations (such as in cooperative sensing). An adversary can jam the transmissions for the local model updates from clients to the server (uplink attack), or the transmissions for the global model updates the server to clients (downlink attack), or both. Given a budget imposed on the number of clients that can be attacked per FL round, clients for the (uplink/downlink) attack are selected according to their local model accuracies that would be expected without an attack or ranked via spectrum observations. This novel attack is extended to general settings by accounting different processing speeds and attack success probabilities for clients. Compared to benchmark attack schemes, this attack approach degrades the FL performance significantly, thereby revealing new vulnerabilities of FL to jamming attacks in wireless networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源