论文标题

确定性相互作用模型中的确切异常电流波动

Exact anomalous current fluctuations in a deterministic interacting model

论文作者

Krajnik, Žiga, Schmidt, Johannes, Pasquier, Vincent, Ilievski, Enej, Prosen, Tomaž

论文摘要

我们通过分析计算相互作用的带电粒子的经典自动机中电荷转移的完整计数统计。根据固定平衡状态,我们在目前生成函数的封闭形式表达式中,我们采用渐近分析来推断连续的时间标准范围的电荷电流波动的结构。该溶液具有几个非正统的特征。最突出的是,在典型波动的时间范围内,尽管动态电荷敏感性的扩散行为,尽管具有偏见的固定合奏中综合电荷电流的概率分布显然是非高斯的。虽然引起电荷不平衡足以恢复高斯波动,但我们发现较高的累积剂在不同的指数中无限期地生长,这意味着奇异的缩放累积剂。我们将这一现象与缺乏定期条件相关联,对矩产生的函数和动态临界点的发作。实际上,缩放的累积生成函数并不是电荷偏差不论代表缩放累积物的忠实生成函数,但是相关的legendre二元双重产生了正确的大差速函数。我们的发现暗示了确定性多体系统中新型的动态通用类型。

We analytically compute the full counting statistics of charge transfer in a classical automaton of interacting charged particles. Deriving a closed-form expression for the moment generating function with respect to a stationary equilibrium state, we employ asymptotic analysis to infer the structure of charge current fluctuations for a continuous range of timescales. The solution exhibits several unorthodox features. Most prominently, on the timescale of typical fluctuations the probability distribution of the integrated charge current in a stationary ensemble without bias is distinctly non-Gaussian despite diffusive behavior of dynamical charge susceptibility. While inducing a charge imbalance is enough to recover Gaussian fluctuations, we find that higher cumulants grow indefinitely in time with different exponents, implying singular scaled cumulants. We associate this phenomenon with the lack of a regularity condition on moment generating functions and the onset of a dynamical critical point. In effect, the scaled cumulant generating function does not, irrespectively of charge bias, represent a faithful generating function of the scaled cumulants, yet the associated Legendre dual yields the correct large-deviation rate function. Our findings hint at novel types of dynamical universality classes in deterministic many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源