论文标题
评估变异量子本素层:应用到海森堡模型
Assessment of the variational quantum eigensolver: application to the Heisenberg model
论文作者
论文摘要
我们提出并分析了一种杂交量子古典变异方法的大规模仿真结果,以计算抗铁磁性海森伯格模型的基态能量。使用大量平行的通用量子计算机模拟器,我们观察到,低深度电路Ansatz有利地利用了有效准备的Néel初始状态,避免了潜在的贫瘠高原,并且可以为一维晶格和二维晶格起作用。该分析反映了通过比较不同的Ansätze,初始参数以及基于梯度的优化器与无梯度优化器所需的决定性成分。外推到热力学极限会准确地产生由贝特·安萨兹(Bethe Ansatz)给出的基态能量的分析值。我们预测,具有100 QUAT的功能性量子计算机可以以相对较小的误差来计算基态能量。
We present and analyze large-scale simulation results of a hybrid quantum-classical variational method to calculate the ground state energy of the anti-ferromagnetic Heisenberg model. Using a massively parallel universal quantum computer simulator, we observe that a low-depth-circuit ansatz advantageously exploits the efficiently preparable Néel initial state, avoids potential barren plateaus, and works for both one- and two-dimensional lattices. The analysis reflects the decisive ingredients required for a simulation by comparing different ansätze, initial parameters, and gradient-based versus gradient-free optimizers. Extrapolation to the thermodynamic limit accurately yields the analytical value for the ground state energy, given by the Bethe ansatz. We predict that a fully functional quantum computer with 100 qubits can calculate the ground state energy with a relatively small error.