论文标题

全矢量弹性波的拓扑材料

Topological materials for full-vector elastic waves

论文作者

Wu, Ying, Lu, Jiuyang, Huang, Xueqin, Yang, Yating, Luo, Li, Yang, Linyun, Li, Feng, Deng, Weiyin, Liu, Zhengyou

论文摘要

在应用程序中,弹性波动操作在各种尺度中很重要,包括微小的弹性设备中的信息处理和大型固体结构中的噪声控制。拓扑材料的最近出现为调节固体中的弹性波提供了新的途径。然而,由于弹性波的纵向和横向成分的复杂耦合,操纵弹性波通常很困难,与操纵声波(标量波)和电磁波(矢量波仅但仅横向)相比,操纵弹性波很困难。最新的拓扑材料(包括绝缘体和半法)已用于声波和电磁波。尽管还报道了弹性波的拓扑材料,但观察到的拓扑边缘模式都位于域壁上。可以问一个自然的问题:是否存在一种弹性超材料,其拓扑边缘模式仅在其自身的边界上?在这里,我们报告了3D金属印刷的双层超材料,从拓扑上进行绝缘弹性波。通过引入手性层间耦合,诱导了弹性波的自旋轨道耦合,从而引起非平凡的拓扑特性。具有涡旋特征的螺旋边缘状态在单个拓扑阶段的边界上显示出来。我们进一步显示了超材料的异质结构,该结构表现出可调边的传输。我们的工作可能在基于固体中弹性波的设备中具有潜力。

Elastic wave manipulation is important in a wide variety of scales in applications including information processing in tiny elastic devices and noise control in big solid structures. The recent emergence of topological materials opens a new avenue toward modulating elastic waves in solids. However, because of the full-vector feature, and the complicated couplings of the longitudinal and transverse components of elastic waves, manipulating elastic waves is generally difficult, compared with manipulating acoustic waves (scalar waves) and electromagnetic waves (vectorial waves but transverse only). Up to date, topological materials, including insulators and semimetals, have been realized for acoustic and electromagnetic waves. Although topological materials of elastic waves have also been reported, the topological edge modes observed all lie on the domain wall. A natural question can be asked: whether there exists an elastic metamaterial with the topological edge modes on its own boundary only? Here, we report a 3D metal-printed bilayer metamaterial, insulating topologically the elastic waves. By introducing the chiral interlayer couplings, the spin-orbit couplings for elastic waves are induced, which give rise to nontrivial topological properties. The helical edge states with the vortex feature are demonstrated on the boundary of the single topological phase. We further show a heterostructure of the metamaterial, which exhibits tunable edge transport. Our work may have potential in devices based on elastic waves in solids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源