论文标题
RICCI边界较低的非汇总空间上的尖锐等级比较
Sharp isoperimetric comparison on non-collapsed spaces with lower Ricci bounds
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies sharp isoperimetric comparison theorems and sharp dimensional concavity properties of the isoperimetric profile for non smooth spaces with lower Ricci curvature bounds, the so-called $N$-dimensional ${\rm RCD}(K,N)$ spaces $(X,\mathsf{d},\mathscr{H}^N)$. The absence of most of the classical tools of Geometric Measure Theory and the possible non existence of isoperimetric regions on non compact spaces are handled via an original argument to estimate first and second variation of the area for isoperimetric sets, avoiding any regularity theory, in combination with an asymptotic mass decomposition result of perimeter-minimizing sequences. Most of our statements are new even for smooth, non compact manifolds with lower Ricci curvature bounds and for Alexandrov spaces with lower sectional curvature bounds. They generalize several results known for compact manifolds, non compact manifolds with uniformly bounded geometry at infinity, and Euclidean convex bodies.