论文标题
一种有效的矩纳米蒸发的方法
An Efficient Moment Method for Modelling Nanoporous Evaporation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Thin-film-based nanoporous membrane technologies exploit evaporation to efficiently cool microscale and nanoscale electronic devices. At these scales, when domain sizes become comparable to the mean free path in the vapour, traditional macroscopic approaches such as the Navier-Stokes-Fourier (NSF) equations become less accurate, and the use of higher-order moment methods is called for. Two higher-order moment equations are considered; the linearised versions of the Grad 13 and Regularised 13 equations. These are applied to the problem of nanoporous evaporation, and results are compared to the NSF method and the method of direct simulation Monte Carlo (i.e. solutions to the Boltzmann equations). Linear and non-linear versions of the boundary conditions are examined, with the latter providing improved results, at little additional computational expense, compared to the linear form. The outcome is a simultaneously accurate and computationally efficient method, which can provide simulation-for-design capabilities at the nanoscale.