论文标题
薄annuli的第二部分特征函数的非放置性
Nonradiality of second fractional eigenfunctions of thin annuli
论文作者
论文摘要
在本文中,我们研究了annuli样域的分数拉普拉斯和相应的特征函数的第二个差异特征值的性质。在第一部分中,我们考虑一个内部半径$ r $和外部半径$ r+1 $的环。我们表明,对于$ r $,该环的任何相应的第二征函数都足够大。在第二部分中,我们调查了$ b_1(0)\ setMinus \ overline {b_τ(a)} $的域中的第二个特征值,其中$ a $在单位球中,$ 0 <τ<1- | a | $。我们表明,如果集合$ b_1(0)\ setMinus \ overline {b_τ(0)} $没有径向第二特定功能,则该值对$ a = 0 $最大化。我们强调,本文的第一部分意味着这个假设确实是非空的。
In the present paper, we study properties of the second Dirichlet eigenvalue of the fractional Laplacian of annuli-like domains and the corresponding eigenfunctions. In the first part, we consider an annulus with inner radius $R$ and outer radius $R+1$. We show that for $R$ sufficiently large any corresponding second eigenfunction of this annulus is nonradial. In the second part, we investigate the second eigenvalue in domains of the form $B_1(0)\setminus \overline{B_τ(a)}$, where $a$ is in the unitary ball and $0<τ<1-|a|$. We show that this value is maximized for $a=0$, if the set $B_1(0)\setminus \overline{B_τ(0)}$ has no radial second eigenfunction. We emphasize that the first part of our paper implies that this assumption is indeed nonempty.