论文标题

手动相互作用推理

Hand-Object Interaction Reasoning

论文作者

Ma, Jian, Damen, Dima

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper proposes an interaction reasoning network for modelling spatio-temporal relationships between hands and objects in video. The proposed interaction unit utilises a Transformer module to reason about each acting hand, and its spatio-temporal relation to the other hand as well as objects being interacted with. We show that modelling two-handed interactions are critical for action recognition in egocentric video, and demonstrate that by using positionally-encoded trajectories, the network can better recognise observed interactions. We evaluate our proposal on EPIC-KITCHENS and Something-Else datasets, with an ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源