论文标题

卷积双图拉普拉斯稀疏编码

Convolutional dual graph Laplacian sparse coding

论文作者

Peng, Xuefeng, Chen, Fei, Cheng, Hang, Wang, Meiqing

论文摘要

近年来,图形信号处理(GSP)技术在各个领域都变得很流行,并且图形拉普拉斯正规化器也已被引入卷积稀疏表示中。本文提出了一个基于双图拉普拉斯正常化程序的卷积稀疏表示模型,以确保在输入图像的行和列上有效应用双图信号平滑。与单个图平滑的先验相比,双图具有简单的结构,放松条件,并且更有利于使用图像信号之前的图像恢复。在本文中,本文使用提出的模型提出了相应的最小化问题,随后使用乘法的交替方向方法(ADMM)算法将其求解在傅立叶域中。在本文中,使用随机的高斯白噪声进行固定实验。与单个图平滑的先验相比,本文中提出的双图平滑模型的降解结果具有较少的噪声点和更清晰的纹理。

In recent years, graph signal processing (GSP) technology has become popular in various fields, and graph Laplacian regularizers have also been introduced into convolutional sparse representation. This paper proposes a convolutional sparse representation model based on the dual graph Laplacian regularizer to ensure effective application of a dual graph signal smoothing prior on the rows and columns of input images.The graph Laplacian matrix contains the gradient information of the image and the similarity information between pixels, and can also describe the degree of change of the graph, so the image can be smoothed. Compared with the single graph smoothing prior, the dual graph has a simple structure, relaxes the conditions, and is more conducive to image restoration using the image signal prior. In this paper, this paper formulated the corresponding minimization problem using the proposed model, and subsequently used the alternating direction method of multiplication (ADMM) algorithm to solve it in the Fourier domain.Finally, using random Gaussian white noise for the denoising experiments. Compared with the single graph smoothing prior,the denoising results of the model with dual graph smoothing prior proposed in this paper has fewer noise points and clearer texture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源