论文标题
无监督的域改编,用于通过解开表示样式转移和协作一致性学习,以进行交叉模式视网膜船舶细分
Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel Segmentation via Disentangling Representation Style Transfer and Collaborative Consistency Learning
论文作者
论文摘要
已经开发了各种深度学习模型,以从医学图像中分割解剖结构,但是在对具有不同数据分布的另一个目标域进行测试时,它们通常的性能较差。最近,已经提出了无监督的域适应方法来减轻这一所谓的域转移问题,但其中大多数是针对具有相对较小的域移位的场景而设计的,并且在遇到较大的域间隙时可能会失败。在本文中,我们提出了DCDA,这是一种新型的跨模式无监督的域适应框架,用于具有较大域移动的任务,例如,从八八颗和OCT图像中分割了视网膜血管。 DCDA主要由一个解开的表示样式转移(DRST)模块和协作一致性学习(CCL)模块组成。 Drst将图像分解为内容组件和样式代码,并执行样式转移和图像重建。 CCL包含两个分割模型,一个用于源域,另一个用于目标域。这两个模型使用标记的数据(以及相应的传输图像)进行监督学习,并对未标记的数据进行协作一致性学习。每个模型都集中在相应的单个域上,并旨在产生专业的域特异性分割模型。通过对视网膜血管分割的广泛实验,我们的框架在从八八(Octa)到OCT到OCTA的目标训练甲骨文(Oracle)和八月(Octa)都取得了骰子得分,并明显超过其他最先进的方法。
Various deep learning models have been developed to segment anatomical structures from medical images, but they typically have poor performance when tested on another target domain with different data distribution. Recently, unsupervised domain adaptation methods have been proposed to alleviate this so-called domain shift issue, but most of them are designed for scenarios with relatively small domain shifts and are likely to fail when encountering a large domain gap. In this paper, we propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts, e.g., segmenting retinal vessels from OCTA and OCT images. DCDA mainly consists of a disentangling representation style transfer (DRST) module and a collaborative consistency learning (CCL) module. DRST decomposes images into content components and style codes and performs style transfer and image reconstruction. CCL contains two segmentation models, one for source domain and the other for target domain. The two models use labeled data (together with the corresponding transferred images) for supervised learning and perform collaborative consistency learning on unlabeled data. Each model focuses on the corresponding single domain and aims to yield an expertized domain-specific segmentation model. Through extensive experiments on retinal vessel segmentation, our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.