论文标题

MAG:一种简单的基于学习的患者级聚合方法,用于从全坡度图像中检测微卫星的不稳定性

MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

论文作者

Pang, Kaifeng, Asad, Zuhayr, Zhao, Shilin, Huo, Yuankai

论文摘要

微卫星不稳定性(MSI)和微卫星稳定性(MSS)的预测对于预测胃肠癌的治疗反应和预后至关重要。在临床实践中,建议进行通用的MSI测试,但是这种测试的可访问性是有限的。因此,需要使用更具成本效益且可访问的工具来覆盖传统未经测试的患者。在过去的几年中,已经提出了基于深度学习的算法,可以直接从山马久氧化物和曙红(H&E)染色的全扫描图像(WSIS)中预测MSI。此类算法可以总结为(1)斑块级MSI/MSS预测,以及(2)患者级聚集。与第一阶段使用的先进的深度学习方法相比,仅在第二阶段使用了幼稚的一阶统计(例如,平均和计数)。在本文中,我们提出了一种简单而广泛的患者级MSI聚合(MAG)方法,以有效整合珍贵的补丁级信息。简而言之,第一阶段中的整个概率分布被建模为基于直方图的特征,旨在将机器学习(例如SVM)融合为最终结果。提出的MAG方法可以轻松地以插件方式使用,该方法已在五个广泛使用的深神经网络上进行了评估:Resnet,Mobilenetv2,EdgitionNet,DPN和Resnext。从结果来看,提出的MAG方法始终提高了两个公开可用数据集的患者级聚合的准确性。我们希望该提出的方法可以潜在地利用基于低成本的H&E MSI检测方法。我们的工作代码已在https://github.com/calvin-pang/mag上公开提供。

The prediction of microsatellite instability (MSI) and microsatellite stability (MSS) is essential in predicting both the treatment response and prognosis of gastrointestinal cancer. In clinical practice, a universal MSI testing is recommended, but the accessibility of such a test is limited. Thus, a more cost-efficient and broadly accessible tool is desired to cover the traditionally untested patients. In the past few years, deep-learning-based algorithms have been proposed to predict MSI directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs). Such algorithms can be summarized as (1) patch-level MSI/MSS prediction, and (2) patient-level aggregation. Compared with the advanced deep learning approaches that have been employed for the first stage, only the naïve first-order statistics (e.g., averaging and counting) were employed in the second stage. In this paper, we propose a simple yet broadly generalizable patient-level MSI aggregation (MAg) method to effectively integrate the precious patch-level information. Briefly, the entire probabilistic distribution in the first stage is modeled as histogram-based features to be fused as the final outcome with machine learning (e.g., SVM). The proposed MAg method can be easily used in a plug-and-play manner, which has been evaluated upon five broadly used deep neural networks: ResNet, MobileNetV2, EfficientNet, Dpn and ResNext. From the results, the proposed MAg method consistently improves the accuracy of patient-level aggregation for two publicly available datasets. It is our hope that the proposed method could potentially leverage the low-cost H&E based MSI detection method. The code of our work has been made publicly available at https://github.com/Calvin-Pang/MAg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源