论文标题

用于系统发育推断的新型对称性神经网络模型

Novel Symmetry-preserving Neural Network Model for Phylogenetic Inference

论文作者

Tang, Xudong, Zepeda-Nunez, Leonardo, Yang, Shengwen, Zhao, Zelin, Solis-Lemus, Claudia

论文摘要

全世界的科学家正在努力理解我们在地球上看到的生物多样性是如何从生命起源的单细胞生物演变而来的,而这种多样化过程是通过生命之树所代表的。跨站点和谱系进化速率的低采样率和高异质性产生的现象表示为“长分支吸引力”(LBA),其中估计长长的非姐姐血统是姐妹,无论其真正的进化关系如何。 LBA一直是系统发育推断的一个普遍问题,影响了不同类型的方法论,从基于距离的基于距离至可能性。在这里,我们提出了一种新型的神经网络模型,该模型胜过LBA设置下的标准系统发育方法和其他神经网络实现。此外,与现有的神经网络模型不同,我们的模型通过排列不变函数自然地解释了树同构,最终会导致较低的内存并允许无缝扩展到较大的树。

Scientists world-wide are putting together massive efforts to understand how the biodiversity that we see on Earth evolved from single-cell organisms at the origin of life and this diversification process is represented through the Tree of Life. Low sampling rates and high heterogeneity in the rate of evolution across sites and lineages produce a phenomenon denoted "long branch attraction" (LBA) in which long non-sister lineages are estimated to be sisters regardless of their true evolutionary relationship. LBA has been a pervasive problem in phylogenetic inference affecting different types of methodologies from distance-based to likelihood-based. Here, we present a novel neural network model that outperforms standard phylogenetic methods and other neural network implementations under LBA settings. Furthermore, unlike existing neural network models, our model naturally accounts for the tree isomorphisms via permutation invariant functions which ultimately result in lower memory and allows the seamless extension to larger trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源