论文标题
关于完整非紧凑型RICCI平坦指标的部分唯一性
On partial uniqueness of complete non-compact Ricci flat metrics
论文作者
论文摘要
使用用于Caccioppoli不平等的技术,在相当一般的非紧密型Kähler歧管上具有子次级体积增长,我们显示出对Monge-Ampere方程的有限$ C^{1,1} $解决方案的独特性。这不是先验的溶液衰减。
Using techniques for Caccioppoli inequality, on a fairly general class of complete non-compact Kähler manifolds with sub-quadratic volume growth, we show uniqueness of bounded $C^{1,1}$ solution to Monge-Ampere equation. This does not a priori require any decay of the solution.