论文标题

Sparsedet:通过伪阳性采矿改善稀疏注释的对象检测

SparseDet: Improving Sparsely Annotated Object Detection with Pseudo-positive Mining

论文作者

Suri, Saksham, Rambhatla, Sai Saketh, Chellappa, Rama, Shrivastava, Abhinav

论文摘要

已知有稀疏注释的培训可以降低对象探测器的性能。以前的方法专注于以未标记盒子的伪标签形式缺少地面真相注释的代理。我们观察到,由于嘈杂的伪标记,现有方法在数据中较高的稀疏性遭受。为了防止这种情况,我们提出了一个端到端系统,该系统学会使用伪阳性采矿将建议分离为标记和未标记的区域。虽然标记的区域像往常一样处理,但自我监督的学习被用来处理未标记的区域,从而防止嘈杂的伪标签的负面影响。与现有方法相比,这种新颖的方法具有多种优势,例如提高较高稀疏性的鲁棒性。我们对Pascal-VOC和可可数据集进行了详尽的实验,可实现最先进的性能。我们还统一了用于此任务的文献中使用的各种拆分,并提出了标准化的基准。平均而言,我们在以前的最先进方法上提高了$ 2.6 $,$ 3.9 $和9.6美元的地图,这三种可可的稀疏性增加了三分。我们的项目可在https://www.cs.umd.edu/~sakshams/sparsedet上公开获取。

Training with sparse annotations is known to reduce the performance of object detectors. Previous methods have focused on proxies for missing ground truth annotations in the form of pseudo-labels for unlabeled boxes. We observe that existing methods suffer at higher levels of sparsity in the data due to noisy pseudo-labels. To prevent this, we propose an end-to-end system that learns to separate the proposals into labeled and unlabeled regions using Pseudo-positive mining. While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions thereby preventing the negative effects of noisy pseudo-labels. This novel approach has multiple advantages such as improved robustness to higher sparsity when compared to existing methods. We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance. We also unify various splits used across literature for this task and present a standardized benchmark. On average, we improve by $2.6$, $3.9$ and $9.6$ mAP over previous state-of-the-art methods on three splits of increasing sparsity on COCO. Our project is publicly available at https://www.cs.umd.edu/~sakshams/SparseDet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源