论文标题

偏置CSP的近似性的表征

A Characterization of Approximability for Biased CSPs

论文作者

Ghoshal, Suprovat, Lee, Euiwoong

论文摘要

带有谓词$ψ的$ $ $ $偏见的max-csp实例:\ {0,1 \}^r \ to \ {0,1 \} $是约束满意度问题(CSP)的一个实例,目的是在其中找到相对权重的标签,最多满足约束的最大分数。有偏见的CSP具有通用性,并表达了几个经过深入研究的问题,例如密度 - $ k $ -sub(hyper)图和SmallSetExpansion。 在这项工作中,我们探讨了偏见参数$μ$在偏见CSP的近似性上所起的作用。我们表明,可以使用密度 - $ K $ -Subhypergergraph(dksh)的偏置 - 及时曲线(dksh)来表征此类CSP的近似性(最多达到Arity $ r $的损失)。特别是,这给出了谓词的严格表征,该谓词承认近似保证与偏置参数$μ$无关。 在以上的动机上,我们为DKSH提供了新的近似值和硬度结果。特别是,假设小型扩展假设(SSEH),我们表明,对于每个$ r \ geq 2 $ r \ geq 2 $和$ r \ geq 2 $ and $ r \ geq 2 $和$ r \ geq 2 $和$ r \ geq 2 $ and $ r \ r^3μ^{r-1} \ log(1/μ),dksh arity $ r $和$ r $和$ k =μn$大约为$ω(r^3μ^{r-1} \ log(1/μ))$。我们还给出了$ O(μ^{r-1} \ log(1/μ))$ - 相同设置的近似算法。当Arity $ r $是一个恒定的情况下,我们的上限和下限都紧密到不变的因素,尤其是在线性偏置方案中最密集的-1 $ K $ -SUBGRAPH问题的第一个紧密近似范围。此外,使用上述表征,我们的结果还意味着每种有偏见的CSP的恒定CSP匹配算法和硬度。

A $μ$-biased Max-CSP instance with predicate $ψ:\{0,1\}^r \to \{0,1\}$ is an instance of Constraint Satisfaction Problem (CSP) where the objective is to find a labeling of relative weight at most $μ$ which satisfies the maximum fraction of constraints. Biased CSPs are versatile and express several well studied problems such as Densest-$k$-Sub(Hyper)graph and SmallSetExpansion. In this work, we explore the role played by the bias parameter $μ$ on the approximability of biased CSPs. We show that the approximability of such CSPs can be characterized (up to loss of factors of arity $r$) using the bias-approximation curve of Densest-$k$-SubHypergraph (DkSH). In particular, this gives a tight characterization of predicates which admit approximation guarantees that are independent of the bias parameter $μ$. Motivated by the above, we give new approximation and hardness results for DkSH. In particular, assuming the Small Set Expansion Hypothesis (SSEH), we show that DkSH with arity $r$ and $k = μn$ is NP-hard to approximate to a factor of $Ω(r^3μ^{r-1}\log(1/μ))$ for every $r \geq 2$ and $μ< 2^{-r}$. We also give a $O(μ^{r-1}\log(1/μ))$-approximation algorithm for the same setting. Our upper and lower bounds are tight up to constant factors, when the arity $r$ is a constant, and in particular, imply the first tight approximation bounds for the Densest-$k$-Subgraph problem in the linear bias regime. Furthermore, using the above characterization, our results also imply matching algorithms and hardness for every biased CSP of constant arity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源