论文标题
太害怕开车:在物理世界攻击下自动驾驶计划中的语义DOS脆弱性
Too Afraid to Drive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous Driving Planning under Physical-World Attacks
论文作者
论文摘要
在高级自主驾驶(AD)系统中,行为计划负责做出高级驾驶决策,例如巡航和停止,因此高度安全关键。在这项工作中,我们对特定于过度保守的AD行为计划行为(即可能导致失败或显着下降的任务绩效的语义安全性漏洞进行了首次系统研究,这对于诸如Robo Taxi/交付之类的广告服务至关重要。我们称它们为语义拒绝服务(DOS)漏洞,由于保守性避免安全事件的趋势,我们设想在实用的AD系统中最普遍地暴露出来。为了实现高实用性和现实主义,我们假设攻击者只能向驾驶环境(例如越野倾倒纸板箱)引入看似框架的外部物理对象。 为了系统地发现这种漏洞,我们设计了PlanFuzz,这是一种新型的动态测试方法,可应对各种特定问题的设计挑战。具体来说,我们建议并确定计划不变性作为新型测试序列,并设计新的输入生成,以系统地对攻击者引入的物理对象进行特定问题的约束。我们还设计了一种新颖的行为计划脆弱性距离度量,以有效地指导发现。我们评估了实用开源广告系统的3个计划实施的PlanFuzz,并发现它可以有效地发现9个以前的语义DOS脆弱性,而无需误报。我们发现我们所有必要的新设计,因为没有每种设计,通常会观察到具有统计学意义的性能下降。我们进一步使用模拟和无车轨迹进行剥削案例研究。我们讨论根本原因和潜在修复。
In high-level Autonomous Driving (AD) systems, behavioral planning is in charge of making high-level driving decisions such as cruising and stopping, and thus highly securitycritical. In this work, we perform the first systematic study of semantic security vulnerabilities specific to overly-conservative AD behavioral planning behaviors, i.e., those that can cause failed or significantly-degraded mission performance, which can be critical for AD services such as robo-taxi/delivery. We call them semantic Denial-of-Service (DoS) vulnerabilities, which we envision to be most generally exposed in practical AD systems due to the tendency for conservativeness to avoid safety incidents. To achieve high practicality and realism, we assume that the attacker can only introduce seemingly-benign external physical objects to the driving environment, e.g., off-road dumped cardboard boxes. To systematically discover such vulnerabilities, we design PlanFuzz, a novel dynamic testing approach that addresses various problem-specific design challenges. Specifically, we propose and identify planning invariants as novel testing oracles, and design new input generation to systematically enforce problemspecific constraints for attacker-introduced physical objects. We also design a novel behavioral planning vulnerability distance metric to effectively guide the discovery. We evaluate PlanFuzz on 3 planning implementations from practical open-source AD systems, and find that it can effectively discover 9 previouslyunknown semantic DoS vulnerabilities without false positives. We find all our new designs necessary, as without each design, statistically significant performance drops are generally observed. We further perform exploitation case studies using simulation and real-vehicle traces. We discuss root causes and potential fixes.