论文标题
在bott-samelson品种和精美的紧凑型的seshadri常数上
On the Seshadri constants of equivariant bundles over Bott-Samelson varieties and wonderful compactifications
论文作者
论文摘要
我们在复杂的投影品种$ x $上研究圆环 - 等级矢量捆绑$ e $,它是bott-samelson-demazure-hansen品种,或者是对复杂的对称品种的最低等级的精美压实。我们表明,$ e $分别是nef(分别是足够的),并且只有当它限制每个圆环时 - $ x $中的曲线分别为nef(分别是nef(分别)。我们还计算了seshadri常数$ \ varepsilon(e,x)$,其中$ x \,\ in \,x $是由最大圆环的动作固定的任何点。
We study torus-equivariant vector bundles $E$ on a complex projective variety $X$ which is either a Bott-Samelson-Demazure-Hansen variety or a wonderful compactification of a complex symmetric variety of minimal rank. We show that $E$ is nef (respectively, ample) if and only if its restriction to every torus--invariant curve in $X$ is nef (respectively, ample). We also compute the Seshadri constants $\varepsilon(E,x)$, where $x\, \in\, X$ is any point fixed by the action of a maximal torus.