论文标题

用于未来无线网络的机器学习辅助大型混合模拟和数字MIMO DOA估计

Machine-learning-aided Massive Hybrid Analog and Digital MIMO DOA Estimation for Future Wireless Networks

论文作者

Shu, Feng, Chen, Yiwen, Zhan, Xichao, Cai, Wenlong, Huang, Mengxing, Jie, Qijuan, Li, Yifang, Shi, Baihua, Wang, Jiangzhou, You, Xiaohu

论文摘要

由于高空间角度分辨率和大型混合模拟和数字(具有)多输入多输出(MIMO)的低回路成本,因此它被视为未来无线网络的宝贵绿色通信技术。将大量的had-mimo与到达方向(DOA)结合在一起,即使是超高精确的DOA测量性能,也将提供高精度,即接近完全数字(FD)MIMO。但是,对于大规模的HADIMO DOA估计,相位歧义是一个挑战问题。在本文中,我们回顾了三个方面:检测,估计和CRAMER-RAO下限(CRLB),在接收器处有低分辨率ADC。首先,提出了多层神经网络(MLNN)检测器来推断被动发射器的存在。然后,提出了一个两层具有(TLHAD)的MIMO结构,以消除仅使用一个snapshot的相位歧义。仿真结果表明,提出的MLNN检测器比现有的广义似然比测试(GRLT)和最大本本值(MAX-EV)与最小本本特征值(R-Maxev-Minev)的比率要好得多。另外,提出的TLHAD结构可以使用单个快照实现相应的CRLB。

Due to a high spatial angle resolution and low circuit cost of massive hybrid analog and digital (HAD) multiple-input multiple-output (MIMO), it is viewed as a valuable green communication technology for future wireless networks. Combining a massive HAD-MIMO with direction of arrival (DOA) will provide a high-precision even ultra-high-precision DOA measurement performance approaching the fully-digital (FD) MIMO. However, phase ambiguity is a challenge issue for a massive HAD-MIMO DOA estimation. In this paper, we review three aspects: detection, estimation, and Cramer-Rao lower bound (CRLB) with low-resolution ADCs at receiver. First, a multi-layer-neural-network (MLNN) detector is proposed to infer the existence of passive emitters. Then, a two-layer HAD (TLHAD) MIMO structure is proposed to eliminate phase ambiguity using only one-snapshot. Simulation results show that the proposed MLNN detector is much better than both the existing generalized likelihood ratio test (GRLT) and the ratio of maximum eigen-value (Max-EV) to minimum eigen-value (R-MaxEV-MinEV) in terms of detection probability. Additionally, the proposed TLHAD structure can achieve the corresponding CRLB using single snapshot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源