论文标题

粒子比与强子共振气体(HRG)和人工神经网络(ANN)模型

Particle ratios with in Hadron Resonance Gas (HRG) and Artificial Neural Network (ANN) models

论文作者

Rahman, R. M. Abdel, El-Bakry, Mahmoud Y., Habashy, D. M., Tawfik, Abdel Nasser, Hanafy, Mahmoud

论文摘要

各种粒子比的比较,例如$ k^ - /k^+$,$π^ - /π^+$,$ \ bar {p}/p $,$ \barλ/λ$,$ \barς/σ$,$ \barω/ω$ $ p/π^ - $,$λ/π^ - $和$ω/π^ - $使用HRG模型计算出,在存在不同的实验测量(例如AGS,SPS,RHIC,RHIC和LHC能量)的情况下,根据ANN模型的仿真和培训估算了结果。 ANN模拟模型描述语音(HRG)模型和实验数据的结果的成功将鼓励在没有实验的区域中对其他粒子比率进行各种预测。

Comparison between various particle ratios such as $K^-/K^+$, $π^-/π^+$, $\bar{p}/p$, $\barΛ/Λ$, $\barΣ/Σ$, $ \barΩ/Ω$, $K^+/π^+$, $K^-/π^-$, $\bar{p}/π^-$, $p/π^-$, $Λ/π^-$, and $Ω/π^-$ calculated using the HRG model with the results estimated from simulation and training of the ANN model in the presence of different experiments measurements such as AGS, SPS, RHIC and LHC energies is done. The success of ANN simulation model to describe the results from both phonological (HRG) model and experimental data will encourage to use it in various predictions for other particle ratios in regions where is no experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源