论文标题
两腔网络中的量子跳跃计量学
Quantum jump metrology in a two-cavity network
论文作者
论文摘要
量子计量学通过利用量子物理学的性质提高了测量精度。在干涉法中,这通常是通过在执行单发测量之前进化的高度输入量子状态来实现的,以揭示有关未知参数的信息。尽管这通常是最佳方法,但除最小国家以外的所有国家的实施仍然极具挑战性。另一种方法是量子跳跃计量学[L. A. Clark等人,物理学。 Rev. A 99,022102(2019)]通过不断监视开放量子系统来推论信息,同时借助量子反馈诱导相关时间相关性。采用这种方法,我们分析了具有激光脉冲形式的两个空腔的光学网络中相对相的测量值。结果表明,所提出的方法可以超过标准量子限制,而无需复杂的量子状态,同时比以前的相关方案更可扩展和实用。
Quantum metrology enhances measurement precision by utilising the properties of quantum physics. In interferometry, this is typically achieved by evolving highly-entangled quantum states before performing single-shot measurements to reveal information about an unknown parameter. While this is often the optimum approach, implementation with all but the smallest states is still extremely challenging. An alternative approach is quantum jump metrology [L. A. Clark et al., Phys. Rev. A 99, 022102 (2019)] which deduces information by continuously monitoring an open quantum system, while inducing phase-dependent temporal correlations with the help of quantum feedback. Taking this approach here, we analyse measurements of a relative phase in an optical network of two cavities with quantum feedback in the form of laser pulses. It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states while being scalable and more practical than previous related schemes.