论文标题

Rgrecsys:推荐系统鲁棒性评估的工具包

RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems

论文作者

Ovaisi, Zohreh, Heinecke, Shelby, Li, Jia, Zhang, Yongfeng, Zheleva, Elena, Xiong, Caiming

论文摘要

强大的机器学习是一个越来越重要的主题,专注于开发具有各种形式不完美数据的模型。由于推荐系统在在线技术中的普遍性,研究人员进行了一些鲁棒性研究,重点是数据稀疏性和配置注射攻击。取而代之的是,我们为推荐系统提出了更全面的鲁棒性观点,该系统包括多个维度 - 相对于子选集,转换,分布差异,攻击和数据稀疏性的鲁棒性。虽然有几个库允许用户比较不同的推荐系统模型,但是在不同方案下,没有软件库对推荐系统模型进行全面的鲁棒性评估。作为我们的主要贡献,我们提出了鲁棒性评估工具包,Recsys的鲁棒性健身房(RGRECSYS - https://www.github.com/salesforce/rgrecsys),使我们能够快速且均匀地评估推荐系统模型的鲁棒性。

Robust machine learning is an increasingly important topic that focuses on developing models resilient to various forms of imperfect data. Due to the pervasiveness of recommender systems in online technologies, researchers have carried out several robustness studies focusing on data sparsity and profile injection attacks. Instead, we propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions - robustness with respect to sub-populations, transformations, distributional disparity, attack, and data sparsity. While there are several libraries that allow users to compare different recommender system models, there is no software library for comprehensive robustness evaluation of recommender system models under different scenarios. As our main contribution, we present a robustness evaluation toolkit, Robustness Gym for RecSys (RGRecSys -- https://www.github.com/salesforce/RGRecSys), that allows us to quickly and uniformly evaluate the robustness of recommender system models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源