论文标题
通过分子动力学模拟电极浆液流变的快速预测的功能数据驱动框架
Functional Data-Driven Framework for Fast Forecasting of Electrode Slurry Rheology Simulated by Molecular Dynamics
论文作者
论文摘要
基于机械方法的锂离子电池(LIB)复合电极制造过程的计算建模允许预测制造参数对电极性能的影响。但是,确保计算出的属性与实验数据良好,通常是在这项工作中消耗的时间和资源,我们通过提出一个功能数据驱动的框架来解决此问题,从而将功能性主体组件分析和K-Neartialt邻居算法结合在一起。这首先要恢复机械电极制造仿真的早期数值,以预测可观察到的可观察到的可观察到的值是否容易匹配,\ textit {i.e}筛选步骤。在第二步中,它恢复了正在进行的机械模拟迭代的其他数值,以预测机械模拟结果,\ textit {i.e}预测步骤。我们通过非平衡分子动力学(NEMD)模拟在LIB制造中证明了这种方法,旨在捕获电极浆的流变行为。我们在全面详细讨论我们的新方法,并报告说,对于运行完整的机械模拟,预期的机械模拟结果可以更快地获得11倍,同时从实验的角度来看足够准确,$ f1_ {score} $等于0.90,而$ r^2_ {2_ {score} $等于0.96的学习效果。这为一个强大的工具铺平了道路,以大大减少计算资源的利用,同时运行电池制造电极的机械模拟。
Computational modeling of the manufacturing process of Lithium-Ion Battery (LIB) composite electrodes based on mechanistic approaches, allows predicting the influence of manufacturing parameters on electrode properties. However, ensuring that the calculated properties match well with experimental data, is typically time and resources consuming In this work, we tackled this issue by proposing a functional data-driven framework combining Functional Principal Component Analysis and K-Nearest Neighbors algorithms. This aims first to recover the early numerical values of a mechanistic electrode manufacturing simulation to predict if the observable being calculated is prone to match or not, \textit{i.e} screening step. In a second step it recovers additional numerical values of the ongoing mechanistic simulation iterations to predict the mechanistic simulation result, \textit{i.e} forecasting step. We demonstrated this approach in context of LIB manufacturing through non-equilibrium molecular dynamics (NEMD) simulations, aiming to capture the rheological behavior of electrode slurries. We discuss in full details our novel methodology and we report that the expected mechanistic simulation results can be obtained 11 times faster with respect to running the complete mechanistic simulation, while being accurate enough from an experimental point of view, with a $F1_{score}$ equals to 0.90, and a $R^2_{score}$ equals to 0.96 for the learnings validation. This paves the way towards a powerful tool to drastically reduce the utilization of computational resources while running mechanistic simulations of battery manufacturing electrodes.