论文标题

最佳近端对的独特性和半标空间的刚性

Uniqueness of best proximity pairs and rigidity of semimetric spaces

论文作者

Dovgoshey, Oleksiy, Shanin, Ruslan

论文摘要

对于任意的半学空间$(x,d)$和近乎连接的近端子集$ a $ a $,$ b $ $ x $,我们将近端图定义为具有零件$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a和$ b $的近视$ \ \ \ {a,b \ b \ b \ b \ b \ b \ b \ b \ b \ b $满足等价$ d(a,b)= \ operatateRaneorneorn $ a的两部分图。我们表征其近端图最多具有一个边缘的半学空间,而近端图的半学空间的顶点最多只有$ 1 $。这使我们能够描述必要和充分的条件,以实现最佳近端对和最佳近似值的独特性。

For arbitrary semimetric space $(X, d)$ and disjoint proximinal subsets $A$, $B$ of $X$ we define the proximinal graph as a bipartite graph with parts $A$ and $B$ whose edges $\{a, b\}$ satisfy the equality $d(a, b) = \operatorname{dist}(A, B)$. We characterize the semimetric spaces whose proximinal graphs have at most one edge and the semimetric spaces whose proximinal graphs have the vertices with degree at most $1$ only. This allows us to describe the necessary and sufficient conditions for uniqueness of the best proximity pairs and best approximations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源