论文标题
基于参考的超分辨率
Coarse-to-Fine Embedded PatchMatch and Multi-Scale Dynamic Aggregation for Reference-based Super-Resolution
论文作者
论文摘要
基于参考的超分辨率(REFSR)在使用外部参考图像(REF)图像生成逼真的纹理方面取得了重大进展。但是,现有的REFSR方法获得了相对于输入大小而消耗二次计算资源的高质量对应匹配,从而限制了其应用程序。此外,这些方法通常遭受低分辨率(LR)图像和REF图像之间的规模不对对准。在本文中,我们提出了一个加速的多尺度聚合网络(AMSA),用于基于参考的超分辨率,包括粗到细节的嵌入式贴片amatch(CFE-PATCHMATCH)和多尺度动态聚合(MSDA)模块。为了提高匹配效率,我们设计了一种具有随机样品传播的新型嵌入式贴片计划,该方案涉及端到端训练,渐近线性计算成本对输入大小。为了进一步降低计算成本并加快收敛速度,我们将构成CFE-PatchMatch的嵌入式贴片策略应用于嵌入式补丁策略。为了充分利用多个尺度的参考信息并增强稳定性的规模未对准,我们开发了由动态聚合和多尺度聚合组成的MSDA模块。动态聚合通过动态聚合特征纠正次要量表未对准,多尺度聚合通过融合多尺度信息来使大规模错位具有鲁棒性。实验结果表明,拟议的AMSA在定量和定性评估方面都比最先进的方法实现了卓越的表现。
Reference-based super-resolution (RefSR) has made significant progress in producing realistic textures using an external reference (Ref) image. However, existing RefSR methods obtain high-quality correspondence matchings consuming quadratic computation resources with respect to the input size, limiting its application. Moreover, these approaches usually suffer from scale misalignments between the low-resolution (LR) image and Ref image. In this paper, we propose an Accelerated Multi-Scale Aggregation network (AMSA) for Reference-based Super-Resolution, including Coarse-to-Fine Embedded PatchMatch (CFE-PatchMatch) and Multi-Scale Dynamic Aggregation (MSDA) module. To improve matching efficiency, we design a novel Embedded PatchMacth scheme with random samples propagation, which involves end-to-end training with asymptotic linear computational cost to the input size. To further reduce computational cost and speed up convergence, we apply the coarse-to-fine strategy on Embedded PatchMacth constituting CFE-PatchMatch. To fully leverage reference information across multiple scales and enhance robustness to scale misalignment, we develop the MSDA module consisting of Dynamic Aggregation and Multi-Scale Aggregation. The Dynamic Aggregation corrects minor scale misalignment by dynamically aggregating features, and the Multi-Scale Aggregation brings robustness to large scale misalignment by fusing multi-scale information. Experimental results show that the proposed AMSA achieves superior performance over state-of-the-art approaches on both quantitative and qualitative evaluations.