论文标题

多部分ramsey编号$ m_j(k_m,nk_2)$

Multipartite Ramsey number $m_j(K_m, nK_2)$

论文作者

Rowshan, Yaser

论文摘要

假设$ k_ {j \ times n} $是一个完整的多部分图,由$ j $ partite集和每个零件集中的$ n $顶点组成。对于给定的图,$ g_1,g_2,\ ldots,g_n $,多部分ramsey号码(m-r-number)$ m_j(g_1,g_1,g_2,\ ldots,g_n)$是最小的整数$ t $,因此对于任何$ n $ n $ n $ n $ n $ n $ n $ n $ - ge^^1,g^^1,g^1,g^2,\ ldots y ed ed ed ed ed ed y g^n $ $ k_ {j \ times t} $,$ g^i $包含至少一个$ i $的$ g_i $的单色副本。 $ j,n \ geq 2 $和$ 4 \ leq m \ leq m \ leq 6 $,m-r-number $ m_j(nk_2,c_7)$的大小,$ j,n \ geq 2 $和$ 4 \ geq 2 $和$ 4 $j,n\geq 2$, the size of M-R-number $m_j(K_3,K_3, n_1K_2,n_2K_,\ldots,n_iK_2)$ for $j \leq 6$ and $i,n_i\geq 1$ and the size of M-R-number $m_j(K_3,K_3, nK_2)$ for $j \geq 2$到目前为止,已经在几篇论文中计算出$ n \ geq 1 $。在本文中,我们获得了M-R-number $ M_J(k_m,nk_2)$的值,每个$ j,n \ geq 2 $和每个$ m \ geq 4 $。

Assume that $K_{j\times n}$ be a complete, multipartite graph consisting of $j$ partite sets and $n$ vertices in each partite set. For given graphs $G_1, G_2,\ldots, G_n$, the multipartite Ramsey number (M-R-number) $m_j(G_1, G_2, \ldots,G_n)$ is the smallest integer $t$ such that for any $n$-edge-coloring $(G^1,G^2,\ldots, G^n)$ of the edges of $K_{j\times t}$, $G^i$ contains a monochromatic copy of $G_i$ for at least one $i$. The size of M-R-number $m_j(nK_2, C_m)$ for $j, n\geq 2$ and $4\leq m\leq 6$, the size of M-R-number $m_j(nK_2, C_7)$ for $j \geq 2$ and $n\geq 2$, the size of M-R-number $m_j(nK_2,K_3)$, for each $j,n\geq 2$, the size of M-R-number $m_j(K_3,K_3, n_1K_2,n_2K_,\ldots,n_iK_2)$ for $j \leq 6$ and $i,n_i\geq 1$ and the size of M-R-number $m_j(K_3,K_3, nK_2)$ for $j \geq 2$ and $n\geq 1$ have been computed in several papers up to now. In this article we obtain the values of M-R-number $m_j(K_m, nK_2)$, for each $j,n\geq 2$ and each $m\geq 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源