论文标题

$ \ mathrm {psu} _3(q)$的立方图形规则表示

Cubic Graphical Regular Representations of $\mathrm{PSU}_3(q)$

论文作者

Li, Jing Jian, Xia, Binzhou, Zhang, Xiao Qian, Zheng, Shasha

论文摘要

$ g $组的图形常规表示(GRR)是$ g $的开纱图,其完整的自动形态组等于$ g $的正确常规置换表示。为了证明只有有限许多有限简单组没有立方GRR的猜想,本文表明$ \ mathrm {psu} _3(q)$在且仅当$ q \ geq4 $时才具有立方GRR。此外,为每个$ q $中的每一个都构建了$ \ mathrm {psu} _3(q)$的立方GRR。

A graphical regular representation (GRR) of a group $G$ is a Cayley graph of $G$ whose full automorphism group is equal to the right regular permutation representation of $G$. Towards a proof of the conjecture that only finitely many finite simple groups have no cubic GRR, this paper shows that $\mathrm{PSU}_3(q)$ has a cubic GRR if and only if $q\geq4$. Moreover, a cubic GRR of $\mathrm{PSU}_3(q)$ is constructed for each of these $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源