论文标题
关于代数连通性和图形的拉普拉斯传播的新猜想
New conjectures on algebraic connectivity and the Laplacian spread of graphs
论文作者
论文摘要
我们猜想了图的代数连接性上的一个新的下限,涉及图中高偏心率的顶点的数量。我们证明,这种下限意味着加强了拉普拉斯的扩散猜想。我们讨论了进一步的猜想,还加强了拉普拉斯的扩散猜想,其中包括简单图的猜想和加权图的猜想。
We conjecture a new lower bound on the algebraic connectivity of a graph that involves the number of vertices of high eccentricity in a graph. We prove that this lower bound implies a strengthening of the Laplacian Spread Conjecture. We discuss further conjectures, also strengthening the Laplacian Spread Conjecture, that include a conjecture for simple graphs and a conjecture for weighted graphs.