论文标题

与叶子最小的共同叶的四维谎言基团上的自然几乎赫尔米尼亚结构

Natural almost Hermitian structures on conformally foliated 4-dimensional Lie groups with minimal leaves

论文作者

Svensson, Emma Andersdotter, Gudmundsson, Sigmundur

论文摘要

令$(g,g)$是一个4维里曼式的谎言小组,具有二维左左右的保形叶子$ \ f $,叶子很少。让$ j $是$ g $的几乎是hermitian结构,适用于叶子$ \ f $。我们对几乎是kähler$(\ a \ k)$,intemable $(\ i)$或kähler$(\ k)$的这种结构进行分类。因此,我们在每个类中构建了几个新的多维示例。

Let $(G,g)$ be a 4-dimensional Riemannian Lie group with a 2-dimensional left-invariant, conformal foliation $\F$ with minimal leaves. Let $J$ be an almost Hermitian structure on $G$ adapted to the foliation $\F$. We classify such structures $J$ which are almost Kähler $(\A\K)$, integrable $(\I)$ or Kähler $(\K)$. Hereby we construct several new multi-dimensional examples in each class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源