论文标题

3D分割,具有完全可训练的Gabor内核和Pearson的相关系数

3D Segmentation with Fully Trainable Gabor Kernels and Pearson's Correlation Coefficient

论文作者

Wong, Ken C. L., Moradi, Mehdi

论文摘要

卷积层和损耗函数是深度学习中的两个基本组成部分。由于传统深度学习的内核的成功,尽管它们可以在不同频率,方向和尺度上提供较少参数的大量功能,但用途较少的Gabor内核变得越来越受欢迎。对于多级图像分割的现有损失功能,通常在准确性,稳健性对超参数和手动体重选择之间的权衡通常会取决于不同的损失。因此,为了获得使用Gabor内核的好处,同时在深度学习中保持自动特征生成的优势,我们提出了一个完全可以训练的Gabor卷积层,其中所有GABOR参数均可通过反向传播训练。此外,我们提出了基于皮尔逊相关系数的损失函数,该系数准确,对学习率很强,不需要手动体重选择。具有19个解剖结构的43个3D脑磁共振图像的实验表明,使用所提出的损失函数与常规和基于Gabor的核的适当组合,我们可以使用只有160万参数的网络来实现平均骰子系数为83%。这种尺寸比具有7100万参数的原始V-NET小44倍。本文展示了在深度学习中使用可学习的参数内核进行3D分割的潜力。

The convolutional layer and loss function are two fundamental components in deep learning. Because of the success of conventional deep learning kernels, the less versatile Gabor kernels become less popular despite the fact that they can provide abundant features at different frequencies, orientations, and scales with much fewer parameters. For existing loss functions for multi-class image segmentation, there is usually a tradeoff among accuracy, robustness to hyperparameters, and manual weight selections for combining different losses. Therefore, to gain the benefits of using Gabor kernels while keeping the advantage of automatic feature generation in deep learning, we propose a fully trainable Gabor-based convolutional layer where all Gabor parameters are trainable through backpropagation. Furthermore, we propose a loss function based on the Pearson's correlation coefficient, which is accurate, robust to learning rates, and does not require manual weight selections. Experiments on 43 3D brain magnetic resonance images with 19 anatomical structures show that, using the proposed loss function with a proper combination of conventional and Gabor-based kernels, we can train a network with only 1.6 million parameters to achieve an average Dice coefficient of 83%. This size is 44 times smaller than the original V-Net which has 71 million parameters. This paper demonstrates the potentials of using learnable parametric kernels in deep learning for 3D segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源