论文标题
碱性地球rydberg原子阵列中易耐故障量子计算的擦除转换
Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
论文作者
论文摘要
在错误校正后的逻辑量子位上执行量子算法是可扩展量子计算的关键步骤,但是对于当前的实验硬件,Qubits和物理错误率的必要数量和物理错误率要求。最近,针对特定物理噪声模型量身定制的错误纠正代码的开发有助于放松这些要求。在这项工作中,我们为$ {}^{}^{171} $ yb中性原子量子A量子量子A编码和GATE协议,将主要物理错误转换为擦除,即已知位置中的错误。关键思想是在亚稳态的电子水平上编码Qubits,以便门误差主要导致向不相交子空间的过渡,这些子空间可以通过荧光连续监测其种群。我们估计98%的错误可以转换为擦除。我们通过对表面代码的电路级模拟量化了这种方法的好处,发现阈值从0.937%增加到4.15%。我们还观察到阈值附近的较大代码距离,从而使相同数量的物理量子位的逻辑错误率更快地降低,这对于近期实现很重要。擦除转换应受益于任何错误纠正代码,还可以应用于设计新的大门和其他量子平台中的编码。
Executing quantum algorithms on error-corrected logical qubits is a critical step for scalable quantum computing, but the requisite numbers of qubits and physical error rates are demanding for current experimental hardware. Recently, the development of error correcting codes tailored to particular physical noise models has helped relax these requirements. In this work, we propose a qubit encoding and gate protocol for ${}^{171}$Yb neutral atom qubits that converts the dominant physical errors into erasures, that is, errors in known locations. The key idea is to encode qubits in a metastable electronic level, such that gate errors predominantly result in transitions to disjoint subspaces whose populations can be continuously monitored via fluorescence. We estimate that 98% of errors can be converted into erasures. We quantify the benefit of this approach via circuit-level simulations of the surface code, finding a threshold increase from 0.937% to 4.15%. We also observe a larger code distance near the threshold, leading to a faster decrease in the logical error rate for the same number of physical qubits, which is important for near-term implementations. Erasure conversion should benefit any error correcting code, and may also be applied to design new gates and encodings in other qubit platforms.