论文标题
3D面向变形攻击:一代,脆弱性和检测
3D Face Morphing Attacks: Generation, Vulnerability and Detection
论文作者
论文摘要
已经发现面部识别系统(FRS)容易受到变形攻击的影响,在这种攻击中,通过将贡献数据主体的脸部图像融合来产生变形的面部图像。这项工作提出了一个新颖的方向,用于在3D中产生面部变形攻击。在此范围内,我们引入了一种基于与贡献数据主体相对应的3D面云的混合。提出的方法通过将输入3D面云投影到深度图和2D颜色图像上,从而生成3D面的变形,然后在颜色图像和深度图上独立执行图像混合和包装操作。然后,我们使用规范(固定)视图将2D变形颜色映射和深度图回到点云中。鉴于生成的3D面变形模型将由于单个规范视图而导致孔,因此我们提出了一种用于填充孔的新算法,该算法将导致高质量的3D面部变形模型。在新生成的3D面部数据集上进行了广泛的实验,其中包括675 3D扫描,对应于41个独特的数据主体和一个具有100个数据主题的公开数据库(FaceScape)。进行了实验,以基准基准{提出的3D形态生成方案对}自动2D,3D FRS和人类观察者分析的脆弱性。我们还使用八个不同质量指标对生成的3D面部变形模型的质量进行了定量评估。最后,我们提出了三种不同的3D面向变形攻击检测(3D-MAD)算法,以基准3D面向变形攻击检测技术的性能。
Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the {proposed 3D morph-generation scheme against} automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.