论文标题
无参数的量子流体力学理论:电子密度依赖性阻尼速率和扩散系数
Parameter-free quantum hydrodynamic theory for plasmonics: Electron density-dependent damping rate and diffusion coefficient
论文作者
论文摘要
血浆是一个快速增长的领域,它已经实现了各种量子光电设备的基本科学和发明。一种准确有效的方法来计算纳米级特征大小的金属结构的光学响应起着重要作用。量子流体力学理论(QHT)提供了自由电子气体的有效描述,其中考虑了非局部性和溢出的量子效应。在这项工作中,我们引入了一个一般的QHT,其中包括扩展以解释扩展,这是表面等离子体的实际应用中的关键问题。我们将引入密度依赖性扩散系数,以提供非常准确的线宽。这是一种自洽的方法,在这种方法中,通过使用相同的能量函数来解决地面和激发态,并用Thomas-Fermi和VonWeizsäcker(vw)形式主义描述的动能。另外,通过引入电子密度依赖性阻尼速率,我们的QHT方法是稳定的。对于各种尺寸的钠纳米球,我们的QHT方法的等离子能和扩展与密度功能理论和kreibig公式相吻合。通过将我们的QHT方法应用于二氯钠纳米棒,我们清楚地表明,我们的方法启用了无参数的模拟,即不采用任何经验参数,例如大小依赖性阻尼速率和扩散系数。发现共振波长与方面无线电之间存在完美的线性关系。宽度随纵横比和高度的增加而降低。计算表明,我们的QHT方法提供了一种明确的统一方法,以说明尺寸依赖性频移并扩大任意形状的几何形状。它可靠且坚固,具有巨大的可预性性,因此为研究血浆提供了一个普遍有效的平台。
Plasmonics is a rapid growing field, which has enabled both fundamental science and inventions of various quantum optoelectronic devices. An accurate and efficient method to calculate the optical response of metallic structures with feature size in the nanoscale plays an important role. Quantum hydrodynamic theory (QHT) provides an efficient description of the free-electron gas, where quantum effects of nonlocality and spill-out are taken into account. In this work, we introduce a general QHT that includes diffusion to account for the broadening, which is a key problem in practical applications of surface plasmon. We will introduce a density-dependent diffusion coefficient to give very accurate linewidth. It is a self-consistent method, in which both the ground and excited states are solved by using the same energy functional, with the kinetic energy described by the Thomas-Fermi and von Weizsäcker (vW) formalisms. In addition, our QHT method is stable by introduction of an electron density-dependent damping rate. For sodium nanosphere of various sizes, the plasmon energy and broadening by our QHT method are in excellent agreement with those by density functional theory and Kreibig formula. By applying our QHT method to sodium jellium nanorods, we clearly show that our method enables a parameter-free simulation, i.e. without resorting to any empirical parameter, such as size-dependent damping rate and diffusing coefficient. It is found that there exists a perfect linear relation between the resonance wavelength and aspect radio. The width decreases with increasing aspect ratio and height. The calculations show that our QHT method provides an explicit and unified way to account for size-dependent frequency shifts and broadening of arbitrarily shaped geometries. It is reliable and robust with great predicability, and hence provides a general and efficient platform to study plasmonics.