论文标题

顶点 - 局关系三角形的反拉姆西数

Anti-Ramsey numbers for vertex-disjoint triangles

论文作者

Wu, Fangfang, Zhang, Shenggui, Li, Binlong, Xiao, Jimeng

论文摘要

如果边缘上的所有颜色都不同,则称为彩虹。鉴于正整数n和图G,抗斑点数AR(n,g)是k_ {n}边缘颜色中的最大颜色数,没有kc_ {3} k pertex-Disjoint副本C_ {3}的kc_ {3}的彩虹副本。在本文中,我们分别确定n = 3k和n \ geq2k^{2} -k+2的抗ramsey编号AR(n,kc_ {3})。当3K \ leq n \ leq 2k^{2} -k+2时,我们给出了AR的下限和上限(n,kc_ {3})。

An edge-colored graph is called rainbow if all the colors on its edges are distinct. Given a positive integer n and a graph G, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of K_{n} with no rainbow copy of G. Denote by kC_{3} the union of k vertex-disjoint copies of C_{3}. In this paper, we determine the anti-Ramsey number ar(n,kC_{3}) for n=3k and n\geq2k^{2}-k+2, respectively. When 3k\leq n\leq 2k^{2}-k+2, we give lower and upper bounds for ar(n, kC_{3}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源