论文标题

多人游戏表演预测:在决策依赖游戏中学习

Multiplayer Performative Prediction: Learning in Decision-Dependent Games

论文作者

Narang, Adhyyan, Faulkner, Evan, Drusvyatskiy, Dmitriy, Fazel, Maryam, Ratliff, Lillian J.

论文摘要

学习问题通常表现出一种有趣的反馈机制,其中人群数据对竞争决策者的行为做出反应。本文为这种现象制定了一种新游戏理论框架,称为“多玩家表演预测”。我们专注于两个不同的解决方案概念,即(i)性能稳定的平衡和(ii)游戏的纳什平衡。后者的平衡可以说是更有信息的,但是只有在游戏是单调的时候才能有效地找到。我们表明,在温和的假设下,可以通过多种算法有效地找到性能稳定的平衡,包括重复的再培训和重复的(随机)梯度方法。然后,我们为游戏的强大单调性建立了透明的足够条件,并使用它们来开发算法来寻找NASH Equilibria。我们研究了衍生的自由方法和自适应梯度算法,其中每个玩家在学习其分布的参数描述和经验风险上的梯度步骤之间进行交替。合成和半合成数值实验说明了结果。

Learning problems commonly exhibit an interesting feedback mechanism wherein the population data reacts to competing decision makers' actions. This paper formulates a new game theoretic framework for this phenomenon, called "multi-player performative prediction". We focus on two distinct solution concepts, namely (i) performatively stable equilibria and (ii) Nash equilibria of the game. The latter equilibria are arguably more informative, but can be found efficiently only when the game is monotone. We show that under mild assumptions, the performatively stable equilibria can be found efficiently by a variety of algorithms, including repeated retraining and the repeated (stochastic) gradient method. We then establish transparent sufficient conditions for strong monotonicity of the game and use them to develop algorithms for finding Nash equilibria. We investigate derivative free methods and adaptive gradient algorithms wherein each player alternates between learning a parametric description of their distribution and gradient steps on the empirical risk. Synthetic and semi-synthetic numerical experiments illustrate the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源