论文标题
GMFIM:隐私保护的生成性面具引导的面部图像操纵模型
GMFIM: A Generative Mask-guided Facial Image Manipulation Model for Privacy Preservation
论文作者
论文摘要
社交媒体网站和应用程序的使用变得非常流行,人们在这些网络上分享照片。自动识别和对这些网络上人们照片的标记提出了隐私保护问题,用户寻求将其身份隐藏在这些算法中的方法。生成的对抗网络(GAN)在高度多样性以及编辑面部图像中生成面部图像非常有力。在本文中,我们提出了一个基于gan的生成性面具引导的面部图像操纵(GMFIM)模型,以将不可察觉的编辑应用于输入面图像,以保留图像中人员的隐私。我们的模型由三个主要组成部分组成:a)面罩模块从输入图像中切出面部区域并忽略背景,b)基于GAN的基于GAN的优化模块,用于操纵面部图像并隐藏身份,c)合并模块,用于结合输入图像的背景和操纵的脱落面部图像。优化步骤的损耗函数在产生与输入图像尽可能相似的高质量图像的损失函数中考虑了不同的标准。与最先进的方法相比,不同数据集上的实验结果表明,我们的模型可以针对自动面部识别系统实现更好的性能,并且在总共18个实验中,它在大多数实验中都获得了更高的攻击成功率。此外,我们所提出的模型的生成图像具有最高的质量,对人的眼睛更令人愉悦。
The use of social media websites and applications has become very popular and people share their photos on these networks. Automatic recognition and tagging of people's photos on these networks has raised privacy preservation issues and users seek methods for hiding their identities from these algorithms. Generative adversarial networks (GANs) are shown to be very powerful in generating face images in high diversity and also in editing face images. In this paper, we propose a Generative Mask-guided Face Image Manipulation (GMFIM) model based on GANs to apply imperceptible editing to the input face image to preserve the privacy of the person in the image. Our model consists of three main components: a) the face mask module to cut the face area out of the input image and omit the background, b) the GAN-based optimization module for manipulating the face image and hiding the identity and, c) the merge module for combining the background of the input image and the manipulated de-identified face image. Different criteria are considered in the loss function of the optimization step to produce high-quality images that are as similar as possible to the input image while they cannot be recognized by AFR systems. The results of the experiments on different datasets show that our model can achieve better performance against automated face recognition systems in comparison to the state-of-the-art methods and it catches a higher attack success rate in most experiments from a total of 18. Moreover, the generated images of our proposed model have the highest quality and are more pleasing to human eyes.