论文标题

机器学习搜索最佳GARCH参数

A machine learning search for optimal GARCH parameters

论文作者

De Clerk, Luke, Savl'ev, Sergey

论文摘要

在这里,我们使用机器学习(ML)算法来更新和提高拟合GARCH模型参数对经验数据的效率。我们采用人工神经网络(ANN)来预测这些模型的参数。我们提出了一种用于GARCH-NOMMAL(1,1)模型的拟合算法,以预测该模型的一个参数之一,$α_1$,然后在第四阶标准化矩,$γ_4$和无条件的二阶阶段$γ_4$的分析表达式中使用分析表达式,$σ^2^2 $以适合其他两个参数; $β_1$和$α_0$。参数的拟合速度和此方法的快速实现允许对GARCH参数进行实时跟踪。我们进一步表明,对ANN的不同输入,即高阶标准化矩和时间序列的自动增强功能,可用于使用ANN拟合模型参数,但并非总是具有相同的准确性。

Here, we use Machine Learning (ML) algorithms to update and improve the efficiencies of fitting GARCH model parameters to empirical data. We employ an Artificial Neural Network (ANN) to predict the parameters of these models. We present a fitting algorithm for GARCH-normal(1,1) models to predict one of the model's parameters, $α_1$ and then use the analytical expressions for the fourth order standardised moment, $Γ_4$ and the unconditional second order moment, $σ^2$ to fit the other two parameters; $β_1$ and $α_0$, respectively. The speed of fitting of the parameters and quick implementation of this approach allows for real time tracking of GARCH parameters. We further show that different inputs to the ANN namely, higher order standardised moments and the autocovariance of time series can be used for fitting model parameters using the ANN, but not always with the same level of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源