论文标题
可调式超导量子位的可调耦合:模块化量子设备的可能应用
Tunable coupling of widely separated superconducting qubits: A possible application towards a modular quantum device
论文作者
论文摘要
除了努力在单个整体量子设备中组装越来越多的量子位,采用模块化设计策略还可以减轻许多工程挑战,以实现具有超导量子的大型量子处理器。然而,模块化量子设备的一个主要挑战是如何实现在不同模块中包含的量子位上的高保真纠缠操作,同时保留模块之间所需的隔离。在这项工作中,我们提出了模块化量子设备的概念设计,该设备附近的模块在空间上以厘米为单位。原则上,每个模块都可以包含数十个超导量子台,并且可以单独制造,表征,包装和更换。通过在附近的值模块之间引入一个桥梁模块并使用可调的总线采用耦合方案,可以实现可调节的总线,可调节的Qupling偶联,这些量子位置在附近的Qubit模块中。鉴于物理合理的假设,我们希望在附近模块中容纳的Qubits低于100-ns的两个Qubit,它们在空间上被空间分离超过两厘米。这样,模块间门操作有望通过与模块内门操作相当的门性能实现。此外,借助通过硅Vias技术,这种远程耦合方案也可能允许一个人在多芯片堆叠的处理器中实现模块间耦合器。因此,可调的长距离耦合方案和提出的模块化体系结构可能为解决大规模量子信息处理的挑战提供了有前途的基础,并使用超导量子台为大规模量子信息处理。
Besides striving to assemble more and more qubits in a single monolithic quantum device, taking a modular design strategy may mitigate numerous engineering challenges for achieving large-scalable quantum processors with superconducting qubits. Nevertheless, a major challenge in the modular quantum device is how to realize high-fidelity entanglement operations on qubits housed in different modules while preserving the desired isolation between modules. In this work, we propose a conceptual design of a modular quantum device, where nearby modules are spatially separated by centimeters. In principle, each module can contain tens of superconducting qubits, and can be separately fabricated, characterized, packaged, and replaced. By introducing a bridge module between nearby qubit modules and taking the coupling scheme utilizing a tunable bus, tunable coupling of qubits that are housed in nearby qubit modules, could be realized. Given physically reasonable assumptions, we expect that sub-100-ns two-qubit gates for qubits housed in nearby modules which are spatially separated by more than two centimeters could be obtained. In this way, the inter-module gate operations are promising to be implemented with gate performance comparable with that of intra-module gate operations. Moreover, with help of through-silicon vias technologies, this long-range coupling scheme may also allow one to implement inter-module couplers in a multi-chip stacked processor. Thus, the tunable longer-range coupling scheme and the proposed modular architecture may provide a promising foundation for solving challenges toward large-scale quantum information processing with superconducting qubits.