论文标题

有效表示解释器与用户之间的协作行为

Effective Representation to Capture Collaboration Behaviors between Explainer and User

论文作者

Akula, Arjun, Zhu, Song-Chun

论文摘要

可解释的AI(XAI)模型旨在为其所做的预测或行动提供透明度(以理由,解释等的形式)。最近,人们非常关注建立XAI模型,尤其是为了理解和解释深度学习模型的预测提供解释。在UCLA,我们提出了一个通用框架,以自然语言与XAI模型进行交互。

An explainable AI (XAI) model aims to provide transparency (in the form of justification, explanation, etc) for its predictions or actions made by it. Recently, there has been a lot of focus on building XAI models, especially to provide explanations for understanding and interpreting the predictions made by deep learning models. At UCLA, we propose a generic framework to interact with an XAI model in natural language.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源