论文标题

通过精确的超相关方法,量子多体问题的计算开销中的数量级降低了数量级

Orders of magnitude reduction in the computational overhead for quantum many-body problems on quantum computers via an exact transcorrelated method

论文作者

Sokolov, Igor O., Dobrautz, Werner, Luo, Hongjun, Alavi, Ali, Tavernelli, Ivano

论文摘要

超相关方法提供了一种有效的方法,可以将电子相关性从基态波函数直接转移到基础的哈密顿量中。尤其是Dobrautz等。 [物理。 B Rev. B,99(7),075119,(2019)]证明,动量空间表示形式与非自动相似性转换相结合,导致Hubbard Hamiltonian具有更紧凑的地面状态波函数,并由单个Slater确定性决定。这种紧凑性/单参照特征极大地促进了电子结构的计算。因此,哈密顿人变成了非列米特人,基于变异原理对量子算法提出了问题。我们通过基于ANSATZ的量子假想时间演化算法克服了这些局限性,并在数字量子计算的背景下应用了超相关方法。我们证明,这种方法在中间相互作用强度($ u/t = 4 $)的各种实例中最多可更准确,紧凑的解决方案,从而使较浅的量子电路用于波函数ansatzes。此外,我们提出了更有效地实施量子电路中的量子性时间演化算法,该算法是针对非官方问题量身定制的。为了验证我们的方法,我们在IBMQ_LIMA量子计算机上执行硬件实验。我们的工作为在量子计算机上使用精确的超相关方法的使用铺平了道路。

Transcorrelated methods provide an efficient way of partially transferring the description of electronic correlations from the ground state wavefunction directly into the underlying Hamiltonian. In particular, Dobrautz et al. [Phys. Rev. B, 99(7), 075119, (2019)] have demonstrated that the use of momentum-space representation, combined with a non-unitary similarity transformation, results in a Hubbard Hamiltonian that possesses a significantly more compact ground state wavefunction, dominated by a single Slater determinant. This compactness/single-reference character greatly facilitates electronic structure calculations. As a consequence, however, the Hamiltonian becomes non-Hermitian, posing problems for quantum algorithms based on the variational principle. We overcome these limitations with the ansatz-based quantum imaginary time evolution algorithm and apply the transcorrelated method in the context of digital quantum computing. We demonstrate that this approach enables up to 4 orders of magnitude more accurate and compact solutions in various instances of the Hubbard model at intermediate interaction strength ($U/t=4$), enabling the use of shallower quantum circuits for wavefunction ansatzes. In addition, we propose a more efficient implementation of the quantum imaginary time evolution algorithm in quantum circuits that is tailored to non-Hermitian problems. To validate our approach, we perform hardware experiments on the ibmq_lima quantum computer. Our work paves the way for the use of exact transcorrelated methods for the simulations of ab initio systems on quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源