论文标题
使用变压器提取缩写的合奏方法
An Ensemble Approach to Acronym Extraction using Transformers
论文作者
论文摘要
首字母缩写词是通过在文本中使用短语的初始组件构建的短语的缩写单元。从文本中自动提取首字母缩写词可以帮助各种自然语言处理任务,例如机器翻译,信息检索和文本摘要。本文讨论了首字母缩写提取任务的合奏方法,该方法利用两种不同的方法提取缩写词及其相应的长形式。第一种方法利用多语言上下文语言模型并微调模型执行任务。第二种方法依赖于卷积神经网络体系结构来提取首字母缩写词,并将其附加到先前方法的输出中。我们还通过从几个开放访问期刊中提取的其他培训样本来增强官方培训数据集,以帮助改善任务绩效。我们的数据集分析还突出了当前任务数据集中的噪声。我们的方法在释放任务的测试数据上达到了以下宏F1分数:丹麦(0.74),英语 - 法律(0.72),英语 - 科学(0.73),法语(0.63),波斯语(0.57),西班牙语(0.65),越南(0.65)。我们公开发布代码和模型。
Acronyms are abbreviated units of a phrase constructed by using initial components of the phrase in a text. Automatic extraction of acronyms from a text can help various Natural Language Processing tasks like machine translation, information retrieval, and text summarisation. This paper discusses an ensemble approach for the task of Acronym Extraction, which utilises two different methods to extract acronyms and their corresponding long forms. The first method utilises a multilingual contextual language model and fine-tunes the model to perform the task. The second method relies on a convolutional neural network architecture to extract acronyms and append them to the output of the previous method. We also augment the official training dataset with additional training samples extracted from several open-access journals to help improve the task performance. Our dataset analysis also highlights the noise within the current task dataset. Our approach achieves the following macro-F1 scores on test data released with the task: Danish (0.74), English-Legal (0.72), English-Scientific (0.73), French (0.63), Persian (0.57), Spanish (0.65), Vietnamese (0.65). We release our code and models publicly.