论文标题
使用Autler-Townes和AC Stark效应,以光学地调整来自按需源的无法区分的单光子的频率
Using the Autler-Townes and ac Stark effects to optically tune the frequency of indistinguishable single-photons from an on-demand source
论文作者
论文摘要
我们描述了与三级梯子系统的上梯级几乎具有谐振的连贯的光学驱动器,并结合短脉冲激发,可用于提供频率可调的单个单个光子的频率来源。使用直观的主方程模型,我们确定了设备操作的两个不同的机制:(i)对于谐振驱动器,源使用自动镇效应进行操作,(ii)对于非谐振驱动器,源源可利用AC Stark stark效应。以前的状态允许大型调谐范围,但连贯性遭受了正时抖动效应的影响,而后者则可以具有很高的不可区分性和效率,但由于所需的驱动强度和失调,因此受到限制性调谐带宽。我们通过使用光腔来提高所需光子的收集速率来显示这两种负面效应如何缓解。我们将一般理论应用于半导体量子点,事实证明是出色的单光子源,发现声音子的散射会导致激发引起的脱位和较高能量水平的增加,从而限制了频率调谐的繁重调整,同时保持高不可固定性。尽管如此,对于逼真的空腔和量子点参数,对于能源转移多达数百美元的能源转移,无法实现超过$ 90 \%$的不可及性,而对于能源转移的近乎不可识别的能力可转移多达数十美元的$ $ $ EV。此外,我们阐明了理想化的Hong-Ou-Mandel两光子干扰实验之间经常被忽视的差异与其通常具有不平衡的Mach-Zehnder干涉仪的常规实现,并指出了与这些不同设置相关的单光子可见性的细微差异。
We describe how a coherent optical drive that is near-resonant with the upper rungs of a three-level ladder system, in conjunction with a short pulse excitation, can be used to provide a frequency-tunable source of on-demand single photons. Using an intuitive master equation model, we identify two distinct regimes of device operation: (i) for a resonant drive, the source operates using the Autler-Townes effect, and (ii) for an off-resonant drive, the source exploits the ac Stark effect. The former regime allows for a large frequency tuning range but coherence suffers from timing jitter effects, while the latter allows for high indistinguishability and efficiency, but with a restricted tuning bandwidth due to high required drive strengths and detunings. We show how both these negative effects can be mitigated by using an optical cavity to increase the collection rate of the desired photons. We apply our general theory to semiconductor quantum dots, which have proven to be excellent single-photon sources, and find that scattering of acoustic phonons leads to excitation-induced dephasing and increased population of the higher energy level which limits the bandwidth of frequency tuning achievable while retaining high indistinguishability. Despite this, for realistic cavity and quantum dot parameters, indistinguishabilities of over $90\%$ are achievable for energy shifts of up to hundreds of $μ$eV, and near-unity indistinguishabilities for energy shifts up to tens of $μ$eV. Additionally, we clarify the often-overlooked differences between an idealized Hong-Ou-Mandel two-photon interference experiment and its usual implementation with an unbalanced Mach-Zehnder interferometer, pointing out the subtle differences in the single-photon visibility associated with these different setups.