论文标题

用于检测集团的量子分布式算法

Quantum Distributed Algorithms for Detection of Cliques

论文作者

Censor-Hillel, Keren, Fischer, Orr, Gall, François Le, Leitersdorf, Dean, Oshman, Rotem

论文摘要

量子计算提供的可能性最近引起了分布式计算社区中的注意,其中几个突破性的结果表明,量子分布式算法比最快的已知古典对应物,甚至两种模型之间的分离更快。一个典型的例子是Izumi,Le Gall和Magniez [Stacs 2020]的结果,他们表明,通过量子分布式算法检测到三角形检测比三角形列表更容易,而在经典案例中却不知道类似的结果。 在本文中,我们提出了一个快速量子分布式集团检测的框架。这改善了三角形案例的最先进,并且更笼统地适用于较大的集团尺寸。 我们的主要技术贡献是一种通过将其封装为可以添加到较小集团的节点的搜索任务来检测集团的新方法。为了从我们的方法中提取最佳复杂性,我们为嵌套的分布式量子搜索开发了一个框架,该量子使用量子本身的检查程序。 此外,我们在证明$ω(n^{3/5+ε})$ $ k_p $ -geq 4 $中的$ω(n^{3/5+ε})$的下限时显示了一个电路复合屏障,即使在古典(非Quantum)分布式的Consated Consated设置中也是如此。

The possibilities offered by quantum computing have drawn attention in the distributed computing community recently, with several breakthrough results showing quantum distributed algorithms that run faster than the fastest known classical counterparts, and even separations between the two models. A prime example is the result by Izumi, Le Gall, and Magniez [STACS 2020], who showed that triangle detection by quantum distributed algorithms is easier than triangle listing, while an analogous result is not known in the classical case. In this paper we present a framework for fast quantum distributed clique detection. This improves upon the state-of-the-art for the triangle case, and is also more general, applying to larger clique sizes. Our main technical contribution is a new approach for detecting cliques by encapsulating this as a search task for nodes that can be added to smaller cliques. To extract the best complexities out of our approach, we develop a framework for nested distributed quantum searches, which employ checking procedures that are quantum themselves. Moreover, we show a circuit-complexity barrier on proving a lower bound of the form $Ω(n^{3/5+ε})$ for $K_p$-detection for any $p \geq 4$, even in the classical (non-quantum) distributed CONGEST setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源