论文标题
非线性特征问题的牛顿般迭代的全球单调融合
Global monotone convergence of Newton-like iteration for a nonlinear eigen-problem
论文作者
论文摘要
研究了非线性特征问题$ ax+f(x)=λx$,其中$ a $是$ n \ times n $ n $ nodredible-norducible stieltjes矩阵。在某些条件下,此问题具有独特的积极解决方案。我们表明,从$ a $ a $的积极特征向量的倍数开始,这个问题的牛顿般的迭代单调收敛。数值结果说明了这种类似牛顿的方法的有效性。
The nonlinear eigen-problem $ Ax+F(x)=λx$ is studied where $A$ is an $n\times n$ irreducible Stieltjes matrix. Under certain conditions, this problem has a unique positive solution. We show that, starting from a multiple of the positive eigenvector of $A$, the Newton-like iteration for this problem converges monotonically. Numerical results illustrate the effectiveness of this Newton-like method.