论文标题

CS-RB-XE混合物中的碰撞EPR频移

Collisional EPR Frequency Shifts in Cs-Rb-Xe Mixtures

论文作者

Zou, S., Morin, D. J., Weaver, C., Armanfard, Z., Muschell, J., Nahlawi, A. I., Saam, B.

论文摘要

我们报告了CS-$^{129} $ XE和RB-$^{129} $ XE在温度范围内的$^{129} $ XE $κ_0$ $κ_0$ $κ_0$ $κ_0$ $κ_0$的测量值$ 115-140 \,两对均用于自旋交换光学泵(SEOP),以产生超极化$^{129} $ Xe。 $κ_0$是$^{129} $ XE磁化对碱金属电子有效领域的扩增,与经典磁静态的均匀连续介​​质相比。该测量是在含有RB和CS金属的“混合”蒸气细胞中进行的,两者的蒸气密度大致相同。通过$^{133} $ cs和$^{133} $ cs和$^{87} $ rb或$ rb或$ rb或$^{85} $ rb,对由SEOP极化和随后突然破坏相同数量的$^{129} $ XE磁化造成的交替测量进行了交替测量。由泵激光器中的功率波动引起的系统误差的重要来源,它在EPR频率中产生了可变的光移动,然后通过为泵激光器允许足够的热身时间来减轻。我们测量$(κ_0)_ {\ rm csxe}/(κ_0)_ {\ rm rbxe} = 1.215 \ pm 0.007 $,没有明显的温度依赖性。根据我们以前的测量$(κ_0)_ {\ rm rbxe} = 518 \ pm 8 $,我们确定$(κ__0)_ {\ rm csxe} = 629 \ pm 10 $,比另一个研究小组进行的先前测量更精确。

We report a measurement of the ratio of dimensionless enhancement factors $κ_0$ for Cs-$^{129}$Xe and Rb-$^{129}$Xe in the temperature range $115-140\, ^{\circ}$C; both pairs are used in spin-exchange optical pumping (SEOP) to produce hyperpolarized $^{129}$Xe. $κ_0$ characterizes the amplification of the $^{129}$Xe magnetization contribution to the alkali-metal electronic effective field, compared to the case of a uniform continuous medium in classical magnetostatics. The measurement was carried out in "hybrid" vapor cells containing both Rb and Cs metal in a prescribed ratio, producing approximately the same vapor density for both. Alternating measurements of the optically detected EPR frequency shifts caused by the SEOP polarization and subsequent sudden destruction of the same quantity of $^{129}$Xe magnetization were made for $^{133}$Cs and either $^{87}$Rb or $^{85}$Rb. An important source of systematic error caused by power fluctuations in the pump laser that produced variable light shifts in the EPR frequency was characterized and then mitigated by allowing sufficient warm-up time for the pump laser. We measured $(κ_0)_{\rm CsXe}/(κ_0)_{\rm RbXe} = 1.215 \pm 0.007$ with no apparent temperature dependence. Based on our previous measurement $(κ_0)_{\rm RbXe}=518 \pm 8$, we determine $(κ_0)_{\rm CsXe} = 629 \pm 10$, more precise than but consistent with a previous measurement made by another research group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源