论文标题
通过计算机视觉从无人用的农作物图像中制定和建立来自无人机的农作物框架的农业植物编目和建立数据框架
Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision
论文作者
论文摘要
现代农业中的基于无人机的图像检索可以收集大量以空间引用的作物图像数据。然而,在大规模的实验中,无人机图像在复杂的冠层结构中含有众多农作物。特别是为了观察时间效应,这使单个植物对几个图像的识别以及相关信息的提取变得复杂。在这项工作中,我们提供了一个动手工作流程,用于基于可理解的计算机视觉方法的“无人机”缩写为“分类”的无人机缩写为“分类”的作物图像的动手工作流程。我们在两个现实世界数据集上评估了工作流程。在整个生长周期中,记录了一个数据集,用于观察甜菜中的糖叶斑 - 一种真菌疾病。另一个处理花椰菜植物的收获预测。植物目录用于提取在多个时间点上看到的单个植物图像。这聚集了大规模时空图像数据集,又可以应用于训练包括各种数据层的更多机器学习模型。提出的方法可显着改善对农业无人机数据的分析和解释。通过使用一些参考数据验证,我们的方法显示出类似于更复杂的基于深度学习的识别技术的准确性。我们的工作流程能够自动化植物编目和训练图像提取,尤其是对于大型数据集。
UAV-based image retrieval in modern agriculture enables gathering large amounts of spatially referenced crop image data. In large-scale experiments, however, UAV images suffer from containing a multitudinous amount of crops in a complex canopy architecture. Especially for the observation of temporal effects, this complicates the recognition of individual plants over several images and the extraction of relevant information tremendously. In this work, we present a hands-on workflow for the automatized temporal and spatial identification and individualization of crop images from UAVs abbreviated as "cataloging" based on comprehensible computer vision methods. We evaluate the workflow on two real-world datasets. One dataset is recorded for observation of Cercospora leaf spot - a fungal disease - in sugar beet over an entire growing cycle. The other one deals with harvest prediction of cauliflower plants. The plant catalog is utilized for the extraction of single plant images seen over multiple time points. This gathers large-scale spatio-temporal image dataset that in turn can be applied to train further machine learning models including various data layers. The presented approach improves analysis and interpretation of UAV data in agriculture significantly. By validation with some reference data, our method shows an accuracy that is similar to more complex deep learning-based recognition techniques. Our workflow is able to automatize plant cataloging and training image extraction, especially for large datasets.