论文标题

冷冻电子显微镜中体积重建的深层生成建模

Deep Generative Modeling for Volume Reconstruction in Cryo-Electron Microscopy

论文作者

Donnat, Claire, Levy, Axel, Poitevin, Frederic, Zhong, Ellen, Miolane, Nina

论文摘要

在使用冷冻电子显微镜(Cryo-EM)溶液中生物分子的高分辨率成像中的最新突破已为重建分子体积的新门解锁,从而有望在生物学,化学和药理学研究方面进一步进一步进展。将生成性建模与端到端无监督的深度学习技术相结合的最新下一代重建算法已显示出令人鼓舞的初步结果,但是当应用于实验性冷冻EM图像时,仍然面临着相当大的技术和理论障碍。鉴于这种方法的扩散,我们在这里提出了对冷冻EM体积重建的深层生成建模领域的最新进展的批判性回顾。本评论的目的是(i)使用一致的统计框架统一和比较这些新方法,(ii)使用机器学习研究人员和计算生物学家熟悉的术语呈现它们,在冷冻EM中没有具体的背景,(iii)提供了当前进步的必要视角,以高高地位的相对优势和弱点,以及良好的瓶装,并在启用瓶装方面进行改进。这篇综述也可能会引起计算机视觉从业人员的兴趣,因为它突出了低信噪比制度中深层生成模型的重大限制 - 因此强调了对新的理论和方法论发展的需求。

Recent breakthroughs in high-resolution imaging of biomolecules in solution with cryo-electron microscopy (cryo-EM) have unlocked new doors for the reconstruction of molecular volumes, thereby promising further advances in biology, chemistry, and pharmacological research. Recent next-generation volume reconstruction algorithms that combine generative modeling with end-to-end unsupervised deep learning techniques have shown promising preliminary results, but still face considerable technical and theoretical hurdles when applied to experimental cryo-EM images. In light of the proliferation of such methods, we propose here a critical review of recent advances in the field of deep generative modeling for cryo-EM volume reconstruction. The present review aims to (i) unify and compare these new methods using a consistent statistical framework, (ii) present them using a terminology familiar to machine learning researchers and computational biologists with no specific background in cryo-EM, and (iii) provide the necessary perspective on current advances to highlight their relative strengths and weaknesses, along with outstanding bottlenecks and avenues for improvements in the field. This review might also raise the interest of computer vision practitioners, as it highlights significant limits of deep generative models in low signal-to-noise regimes -- therefore emphasizing a need for new theoretical and methodological developments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源