论文标题
通过使用光谱数据和完全连接的神经网络对高光谱图像进行分类
Classification of Hyperspectral Images by Using Spectral Data and Fully Connected Neural Network
论文作者
论文摘要
据观察,使用深度学习方法可以实现一维信号的高分类性能。在这种情况下,大多数研究人员试图通过使用深度学习方法对高光谱图像进行分类,并为这些图像取得了超过90%的分类。深神经网络(DNN)实际上由两个部分组成:i)卷积神经网络(CNN)和II)完全连接的神经网络(FCNN)。尽管CNN确定功能,但FCNN用于分类。在高光谱图像的分类中,观察到几乎所有研究人员在光谱数据(特征)旁边的空间数据上使用了2D或3D卷积过滤器。在图像或时间信号上使用卷积过滤器很方便。在高光谱图像中,每个像素由一个签名向量表示,该签名向量由彼此独立的个体特征组成。由于可以更改向量中的功能的顺序,因此在按时信号上使用这些功能上的卷积过滤器是没有意义的。同时,由于高光谱图像没有纹理结构,因此除了光谱数据以外,无需使用空间数据。在这项研究中,仅使用完全连接的神经网络和具有一维的光谱数据来对印度松树,萨利纳斯,帕维亚中心,帕维亚大学和博茨瓦纳的高光谱图像进行分类。对于所有高光谱图像的测试集,平均准确度为97.5%。
It is observed that high classification performance is achieved for one- and two-dimensional signals by using deep learning methods. In this context, most researchers have tried to classify hyperspectral images by using deep learning methods and classification success over 90% has been achieved for these images. Deep neural networks (DNN) actually consist of two parts: i) Convolutional neural network (CNN) and ii) fully connected neural network (FCNN). While CNN determines the features, FCNN is used in classification. In classification of the hyperspectral images, it is observed that almost all of the researchers used 2D or 3D convolution filters on the spatial data beside spectral data (features). It is convenient to use convolution filters on images or time signals. In hyperspectral images, each pixel is represented by a signature vector which consists of individual features that are independent of each other. Since the order of the features in the vector can be changed, it doesn't make sense to use convolution filters on these features as on time signals. At the same time, since the hyperspectral images do not have a textural structure, there is no need to use spatial data besides spectral data. In this study, hyperspectral images of Indian pines, Salinas, Pavia centre, Pavia university and Botswana are classified by using only fully connected neural network and the spectral data with one dimensional. An average accuracy of 97.5% is achieved for the test sets of all hyperspectral images.