论文标题

动力三角形的动力:其流程图和应用的无限组成部分

Dynamics of veering triangulations: infinitesimal components of their flow graphs and applications

论文作者

Agol, Ian, Tsang, Chi Cheuk

论文摘要

我们研究了与逆转三角剖分相关的流程图的紧密连接的组件,并表明无穷小的成分必须具有某种形式,这与我们称为“墙”的三角剖分子集有关。我们展示了此知识的两个应用:(1)第一作者在原始论文中的证明解决方案; (2)另一种证据表明,旋转三角形会诱导伪anosov而没有完美的拟合,这最初是由Schleimer和Segerman证明的。

We study the strongly connected components of the flow graph associated to a veering triangulation, and show that the infinitesimal components must be of a certain form, which have to do with subsets of the triangulation which we call `walls'. We show two applications of this knowledge: (1) a fix of a proof in the original paper by the first author which introduced veering triangulations; and (2) an alternate proof that veering triangulations induce pseudo-Anosov flows without perfect fits, which was initially proved by Schleimer and Segerman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源