论文标题

非线性schrödinger方程的驻波的存在和稳定性具有关键的旋转速度

Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed

论文作者

Dinh, Van Duong

论文摘要

我们研究了与cauchy问题相关的常势的存在和稳定性,该非线性schrödinger方程(NLS)具有临界旋转速度和轴向对称的谐波电位。该方程是作为一个有效模型,描述了具有角速度旋转的磁陷阱中有吸引力的玻色网凝结。通过将方程式视为具有恒定磁场的NLS,并具有(或不具有)部分谐波限制,我们确定了规定的质量站立波的存在和轨道稳定性,用于具有质量 - 批判性,质量批判性和质量性非线性的方程式。我们的结果扩展了[Bellazzini-Boussaïd-Jeanjean-Visciglia,Comm。数学。物理。 353(2017),没有。 1,229-251],在其中建立了具有部分限制的超临界NLS的站立波的存在和稳定性。

We study the existence and stability of standing waves associated to the Cauchy problem for the nonlinear Schrödinger equation (NLS) with a critical rotational speed and an axially symmetric harmonic potential. This equation arises as an effective model describing the attractive Bose-Einstein condensation in a magnetic trap rotating with an angular velocity. By viewing the equation as NLS with a constant magnetic field and with (or without) a partial harmonic confinement, we establish the existence and orbital stability of prescribed mass standing waves for the equation with mass-subcritical, mass-critical, and mass-supercritical nonlinearities. Our result extends a recent work of [Bellazzini-Boussaïd-Jeanjean-Visciglia, Comm. Math. Phys. 353 (2017), no. 1, 229-251], where the existence and stability of standing waves for the supercritical NLS with a partial confinement were established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源